نگاهی به ریاضیات پیشرفته/آنالیز ریاضی

آنالیز ریاضی بخش‌هایی از ریاضیات است که با مفاهیم حد و همگرایی مربوط‌اند و در آن‌ها موضوعاتی مثل پیوستگی و انتگرال‌گیری و مشتق‌پذیری و توابع غیرجبری بررسی می‌شود. این موضوعات را معمولاً در عرصه‌ی اعداد حقیقی یا اعداد مختلط و توابع مربوط به آن‌ها بحث می‌کنند ولی می‌توان آن‌ها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد به‌ کار برد. آنالیز ریاضی از کوشش‌های مربوط به دقیق کردن مبانی و تعریف‌های حسابان سر برآورده است.

یک جاذب شگفت ناشی از معادله دیفرانسیل. معادلات دیفرانسیل بخش مهمی از آنالیز ریاضی؛ با بسیاری از برنامه‌های کاربردی در علم و مهندسی است.آنالیز با استفاده ار انتگرال،هندسه،معادله دیفرانسیل حل و بررسی می شود.

این نظریه ها معمولاً در زمینه اعداد و توابع حقیقی و مختلط مورد مطالعه قرار می گیرند . تجزیه و تحلیل از حساب دیفرانسیل و انتگرال ، که شامل مفاهیم اولیه و تکنیک های تجزیه و تحلیل است، تکامل یافته است. تجزیه و تحلیل را می توان از هندسه متمایز کرد . با این حال، می توان آن را برای هر فضایی از اشیاء ریاضی که تعریفی از نزدیکی (یک فضای توپولوژیکی) یا فواصل خاص بین اشیاء (یک فضای متریک) دارد، اعمال کرد.

تاریخچه

ویرایش

ارشمیدس از روش فرسودگی برای محاسبه مساحت داخل دایره با یافتن مساحت چندضلعی‌های منظم با اضلاع بیشتر و بیشتر استفاده کرد. این یک مثال اولیه اما غیررسمی از حد بود، یکی از اساسی‌ترین مفاهیم در تجزیه و تحلیل ریاضی.

تجزیه و تحلیل ریاضی به طور رسمی در قرن هفدهم در طول انقلاب علمی توسعه یافت ،  اما بسیاری از ایده های آن را می توان به ریاضیدانان قبلی ردیابی کرد. نتایج اولیه در تجزیه و تحلیل به طور ضمنی در روزهای اولیه ریاضیات یونان باستان وجود داشت. به عنوان مثال، یک مجموع هندسی نامتناهی در پارادوکس زنو از دوگانگی ضمنی است .  بعدها، ریاضیدانان یونانی مانند ادوکسوس و ارشمیدس زمانی که از روش فرسودگی استفاده کردند، از مفاهیم حدود و همگرایی صریح تر، اما غیررسمی استفاده کردند.برای محاسبه مساحت و حجم مناطق و جامدات. استفاده صریح از بی‌نهایت‌ها در روش قضایای مکانیکی ارشمیدس ، اثری که در قرن بیستم دوباره کشف شد، ظاهر می‌شود. در آسیا، ریاضیدان چینی لیو هوی از روش خستگی در قرن سوم پس از میلاد برای یافتن مساحت دایره استفاده کرد.  از ادبیات جین، چنین به نظر می رسد که هندوها در اوایل قرن چهارم قبل از میلاد ، فرمول های جمع سری های حسابی و هندسی را در اختیار داشتند  آکاریا بهدراباهو از مجموع یک سری هندسی در کالپسوترا خود در سال 433 استفاده می کند. قبل از میلاد در ریاضیات هندی ، نمونه های خاصی از سری های حسابی به طور ضمنی در ادبیات ودایی در اوایل 2000 قبل از میلاد یافت شده است.

قرون وسطی

ویرایش

زو چونگجی روشی را ایجاد کرد که بعداً به عنوان اصل کاوالیری برای یافتن حجم یک کره در قرن پنجم نام گرفت. در قرن دوازدهم، ریاضی‌دان هندی بهاسکارای دوم نمونه‌هایی از مشتقات ارائه کرد و از آنچه امروزه به عنوان قضیه رول شناخته می‌شود، استفاده کرد.

در قرن چهاردهم، مادهاوا از سانگاماگراما توابعی مانند سینوس ، کسینوس ، مماس و قطبی را توسعه داد که اکنون سری تیلور نامیده می شود. در کنار توسعه سری توابع مثلثاتی تیلور ، او همچنین بزرگی عبارات خطای حاصل از کوتاه کردن این سری‌ها را تخمین زد و یک تقریب منطقی از تعدادی سری نامتناهی ارائه کرد. پیروان او در مدرسه نجوم و ریاضیات کرالا آثار او را تا قرن شانزدهم بیشتر گسترش دادند.

پایه ها

ویرایش

مبانی مدرن تجزیه و تحلیل ریاضی در قرن هفدهم اروپا پایه‌گذاری شد. این زمانی آغاز شد که فرما و دکارت هندسه تحلیلی را توسعه دادند، که پیشروی حساب مدرن است. روش کفایی فرما به او اجازه داد حداکثر و حداقل توابع و مماس منحنی ها را تعیین کند.  انتشار دکارت از La Géométrie در سال 1637، که سیستم مختصات دکارتی را معرفی کرد ، به عنوان ایجاد تجزیه و تحلیل ریاضی در نظر گرفته می شود. چند دهه بعد بود که نیوتن و لایب نیتس به طور مستقل توسعه یافتندحساب بی نهایت کوچک ، که با محرک کار کاربردی که تا قرن 18 ادامه یافت، به مباحث تحلیلی مانند حساب تغییرات، معادلات دیفرانسیل معمولی و جزئی ، تحلیل فوریه، و توابع تولیدی تبدیل شد. در این دوره، تکنیک‌های حساب دیفرانسیل و انتگرال برای تقریب مسائل گسسته توسط مسایل پیوسته استفاده شد.

نوسازیویرایش کنید

ویرایش

در قرن هجدهم، اویلر مفهوم تابع ریاضی را معرفی کرد. زمانی که برنارد بولزانو تعریف مدرن تداوم را در سال 1816 ارائه کرد، تحلیل واقعی به عنوان یک موضوع مستقل شروع به ظهور کرد ،  اما کار بولزانو تا دهه 1870 به طور گسترده ای شناخته نشد. در سال 1821، کوشی با رد اصل عمومیت جبر که به طور گسترده در کارهای قبلی، به ویژه توسط اویلر، استفاده می شد، شروع به قرار دادن حساب بر روی یک پایه منطقی محکم کرد. در عوض، کوشی حساب دیفرانسیل و انتگرال را بر اساس ایده های هندسی و بی نهایت کوچک فرموله کرد . بنابراین، تعریف او از تداوم مستلزم تغییر بی نهایت کوچک در x بودبرای مطابقت با یک تغییر بی نهایت کوچک در y . او همچنین مفهوم دنباله کوشی را معرفی کرد و نظریه رسمی تحلیل پیچیده را آغاز کرد . پواسون , لیوویل , فوریه و دیگران معادلات دیفرانسیل جزئی و آنالیز هارمونیک را مطالعه کردند . مشارکت این ریاضیدانان و دیگران، مانند وایرشتراس ، (ε، δ) -تعریف رویکرد حد را توسعه دادند، بنابراین زمینه مدرن تجزیه و تحلیل ریاضی را پایه‌گذاری کردند.

در اواسط قرن نوزدهم، ریمان نظریه ادغام خود را مطرح کرد . در ثلث آخر قرن، وایرشتراس ، تحلیل را حساب کرد ، که فکر می‌کرد استدلال هندسی ذاتاً گمراه‌کننده است، و تعریف «epsilon-delta» از حد را ارائه کرد. سپس، ریاضیدانان شروع به نگرانی کردند که آنها وجود زنجیره ای از اعداد واقعی را بدون اثبات فرض می کنند. سپس ددکیند اعداد واقعی را با برش های ددکیند ساخت، که در آن اعداد غیر منطقی به طور رسمی تعریف می شوند، که برای پر کردن "شکاف" بین اعداد گویا، در نتیجه یک مجموعه کامل ایجاد می کنند: زنجیره اعداد واقعی، که قبلاً توسط سیمون استوین بر حسب بسط های اعشاری ایجاد شده بود. در همان زمان، تلاش‌ها برای اصلاح قضایای ادغام ریمان منجر به مطالعه «اندازه» مجموعه ناپیوستگی‌های توابع واقعی شد.

همچنین، " هیولاها " ( هیچ جا توابع پیوسته ، توابع پیوسته اما هیچ جا قابل تمایز ، منحنی های پرکننده فضا ) شروع به بررسی کردند. در این زمینه، جردن نظریه اندازه گیری خود را توسعه داد ، کانتور آنچه را که امروزه نظریه مجموعه ساده لوح نامیده می شود ، و بایر قضیه دسته بایر را اثبات کرد . در اوایل قرن بیستم، حساب دیفرانسیل و انتگرال با استفاده از نظریه مجموعه‌های بدیهی رسمیت یافت . Lebesgue مشکل اندازه گیری را حل کرد و هیلبرت فضاهای هیلبرت را برای حل معرفی کردمعادلات انتگرال . ایده فضای برداری هنجاری در هوا بود، و در دهه 1920، Banach تجزیه و تحلیل عملکردی را ایجاد کرد.

مفاهیم مهم

ویرایش

فضاهای متریک

ویرایش

در ریاضیات ، فضای متریک مجموعه‌ای است که در آن مفهوم فاصله (به نام متریک ) بین عناصر مجموعه تعریف می‌شود.

بسیاری از تحلیل ها در فضای متریک اتفاق می افتد. متداول ترین آنها عبارتند از: خط واقعی ، صفحه مختلط ، فضای اقلیدسی ، سایر فضاهای برداری و اعداد صحیح . نمونه‌هایی از تجزیه و تحلیل بدون متریک شامل نظریه اندازه‌گیری (که اندازه را به جای فاصله توصیف می‌کند) و تحلیل عملکردی (که فضاهای برداری توپولوژیکی را که نیازی به احساس فاصله ندارند، مطالعه می‌کند).

به طور رسمی، یک فضای متریک یک جفت مرتب شده است(M,d) جایی کهMیک مجموعه است وdیک متریک در است، پسM یک تابع است.

 

به طوری که برای هر  موارد زیر صادق است:

( هویت غیر قابل تشخیص ها)   ( تقارن )   ( نابرابری مثلث )   با گرفتن ملک سوم و اجاره، می توان نشان داد که  ( غیر منفی ).

توالی ها و محدودیت

ویرایش

دنباله یک لیست مرتب شده است. مانند یک مجموعه ، شامل اعضایی است (که عناصر یا اصطلاحات نیز نامیده می شوند ). برخلاف یک مجموعه، نظم مهم است و دقیقاً همان عناصر می توانند چندین بار در موقعیت های مختلف دنباله ظاهر شوند. به طور دقیق تر، یک دنباله را می توان به عنوان تابعی تعریف کرد که دامنه آن یک مجموعه کاملاً مرتب قابل شمارش است، مانند اعداد طبیعی .

یکی از مهمترین ویژگی های یک دنباله همگرایی است . به طور غیررسمی، یک دنباله اگر حدی داشته باشد همگرا می شود . در ادامه غیررسمی، یک دنباله ( منفرد-بی نهایت ) اگر به نقطه x نزدیک شود که حد نامیده می شود، محدودیتی دارد، زیرا n بسیار بزرگ می شود. یعنی برای یک دنباله انتزاعی ( a n ) (که n از 1 تا بی نهایت قابل درک است) فاصله بین a n و x به 0 نزدیک می شود که n → ∞ نشان داده شده است.

 

شاخه های اصلی

ویرایش

تحلیل واقعی

ویرایش

تحلیل واقعی (به طور سنتی، نظریه توابع یک متغیر واقعی ) شاخه ای از تحلیل ریاضی است که با اعداد واقعی و توابع با ارزش واقعی یک متغیر واقعی سروکار دارد.  به طور خاص، به ویژگی های تحلیلی توابع و دنباله های واقعی ، از جمله همگرایی و حدود دنباله های اعداد حقیقی، حساب اعداد حقیقی، و تداوم ، همواری و ویژگی های مرتبط توابع با ارزش واقعی می پردازد . .

تحلیل پیچیده

ویرایش

تجزیه و تحلیل مختلط (به طور سنتی به عنوان نظریه توابع یک متغیر مختلط شناخته می شود) شاخه ای از تجزیه و تحلیل ریاضی است که به بررسی توابع اعداد مختلط می پردازد.  در بسیاری از شاخه های ریاضیات، از جمله هندسه جبری ، نظریه اعداد ، ریاضیات کاربردی مفید است . و همچنین در فیزیک ، از جمله هیدرودینامیک ، ترمودینامیک ، مهندسی مکانیک ، مهندسی برق ، و به ویژه، نظریه میدان کوانتومی .

تحلیل پیچیده به ویژه با توابع تحلیلی متغیرهای پیچیده (یا به طور کلی تر، توابع مرومورفیک ) سروکار دارد. از آنجایی که بخش های واقعی و خیالی مجزای هر تابع تحلیلی باید معادله لاپلاس را برآورده کند ، تحلیل پیچیده به طور گسترده برای مسائل دو بعدی در فیزیک قابل استفاده است .

تجزیه و تحلیل عملکردو

ویرایش

آنالیز تابعی شاخه ای از تحلیل ریاضی است که هسته آن با مطالعه فضاهای برداری که دارای نوعی ساختار مرتبط با حد هستند (مثلاً حاصل ضرب درونی ، هنجار ، توپولوژی و غیره) و عملگرهای خطی بر روی این فضاها تشکیل می شود و احترام به این ساختارها به معنای مناسب. ریشه های تاریخی تحلیل تابعی در مطالعه فضاهای توابع و فرمول بندی ویژگی های تبدیل توابع مانند تبدیل فوریه به عنوان تبدیل هایی است که پیوسته و واحد را تعریف می کنند.و غیره عملگرهای بین فضاهای تابع. این دیدگاه مشخص شد که برای مطالعه معادلات دیفرانسیل و انتگرال مفید است.

تحلیل هارمونیک

ویرایش

آنالیز هارمونیک شاخه ای از آنالیز ریاضی است که به نمایش توابع و سیگنال ها به عنوان برهم نهی امواج اساسی می پردازد. این شامل مطالعه مفاهیم سری فوریه و تبدیل فوریه ( تحلیل فوریه ) و تعمیم آنها است. تجزیه و تحلیل هارمونیک در زمینه های مختلفی مانند تئوری موسیقی ، نظریه اعداد ، نظریه نمایش ، پردازش سیگنال ، مکانیک کوانتومی ، تجزیه و تحلیل جزر و مد و علوم اعصاب کاربرد دارد.

معادلات دیفرانسیل

ویرایش

معادله دیفرانسیل یک معادله ریاضی برای یک تابع مجهول از یک یا چند متغیر است که مقادیر خود تابع و مشتقات آن از مرتبه های مختلف را به هم مرتبط می کند.  معادلات دیفرانسیل نقش برجسته ای در مهندسی ، فیزیک ، اقتصاد ، زیست شناسی و سایر رشته ها ایفا می کنند.

معادلات دیفرانسیل در بسیاری از حوزه‌های علم و فناوری به وجود می‌آیند، به‌ویژه زمانی که یک رابطه قطعی شامل مقادیری پیوسته متغیر (مدل‌سازی شده با توابع) و نرخ‌های تغییر آن‌ها در مکان یا زمان (بیان شده به عنوان مشتقات) شناخته یا فرض شود. این در مکانیک کلاسیک نشان داده شده است ، جایی که حرکت یک جسم با موقعیت و سرعت آن با تغییر مقدار زمان توصیف می‌شود. قوانین نیوتن به شخص اجازه می دهد (با توجه به موقعیت، سرعت، شتاب و نیروهای مختلف وارد بر جسم) این متغیرها را به صورت دینامیکی به عنوان یک معادله دیفرانسیل برای موقعیت مجهول جسم به عنوان تابعی از زمان بیان کند. در برخی موارد، این معادله دیفرانسیل (که معادله حرکت نامیده می شود) ممکن است به صراحت حل شود.

تئوری اندازه گیری

ویرایش

اندازه گیری در یک مجموعه روشی سیستماتیک برای اختصاص یک عدد به هر زیر مجموعه مناسب از آن مجموعه است که به طور شهودی به عنوان اندازه آن تفسیر می شود.  در این معنا، معیار تعمیم مفاهیم طول، مساحت و حجم است. یک مثال مهم، اندازه گیری Lebesgue در فضای اقلیدسی است که طول ، مساحت و حجم معمولی هندسه اقلیدسی را به زیرمجموعه های مناسب نسبت می دهد.فضای اقلیدسی بعدی. به عنوان مثال، اندازه گیری Lebesgue از فاصله در اعداد واقعی طول آن به معنای روزمره کلمه است - به طور خاص، 1.

از نظر فنی، یک اندازه گیری تابعی است که یک عدد واقعی غیر منفی یا +∞ را به زیرمجموعه های (بعضی) یک مجموعه اختصاص می دهد.. باید 0 را به مجموعه خالی اختصاص دهد و ( قابل شمارش ) جمعی باشد: اندازه یک زیر مجموعه "بزرگ" که می تواند به تعداد محدود (یا قابل شمارش) از زیر مجموعه های ناهمگون "کوچکتر" تجزیه شود، مجموع مقادیر زیر مجموعه های "کوچکتر". به طور کلی، اگر کسی بخواهد یک اندازه ثابت را به هر زیر مجموعه از یک مجموعه معین مرتبط کند و در عین حال سایر بدیهیات یک اندازه گیری را برآورده کند، فقط نمونه های بی اهمیتی مانند معیار شمارش را پیدا می کند . این مشکل با تعریف اندازه گیری فقط در زیر مجموعه ای از همه زیر مجموعه ها حل شد. به اصطلاح زیر مجموعه های قابل اندازه گیری که برای تشکیل الف مورد نیاز است-جبر . این بدان معنی است که اتحادیه های قابل شمارش، تقاطع های قابل شمارش و مکمل های زیر مجموعه های قابل اندازه گیری قابل اندازه گیری هستند. مجموعه‌های غیرقابل اندازه‌گیری در فضای اقلیدسی، که معیار لبگ را نمی‌توان به‌طور پیوسته بر اساس آن‌ها تعریف کرد، لزوماً به این معنا که به شدت با مکمل‌شان مخلوط می‌شوند، پیچیده هستند. در واقع، وجود آنها پیامد غیر پیش پا افتاده اصل انتخاب است.

تحلیل عددی

ویرایش

تحلیل عددی مطالعه الگوریتم‌هایی است که از تقریب عددی (برخلاف دستکاری‌های نمادین عمومی ) برای مسائل آنالیز ریاضی (که از ریاضیات گسسته متمایز می‌شوند ) استفاده می‌کنند.

تجزیه و تحلیل عددی مدرن به دنبال پاسخ های دقیق نیست، زیرا اغلب به دست آوردن پاسخ های دقیق در عمل غیرممکن است. در عوض، بسیاری از تحلیل‌های عددی به دستیابی به راه‌حل‌های تقریبی و در عین حال حفظ مرزهای منطقی در خطاها مربوط می‌شود.

تجزیه و تحلیل عددی به طور طبیعی در همه زمینه های مهندسی و علوم فیزیکی کاربرد دارد، اما در قرن بیست و یکم، علوم زیستی و حتی هنرها عناصر محاسبات علمی را به کار گرفته اند. معادلات دیفرانسیل معمولی در مکانیک سماوی (سیاره ها، ستاره ها و کهکشان ها) ظاهر می شوند. جبر خطی عددی برای تجزیه و تحلیل داده ها مهم است. معادلات دیفرانسیل تصادفی و زنجیره های مارکوف در شبیه سازی سلول های زنده برای پزشکی و زیست شناسی ضروری هستند.

تحلیل برداری

ویرایش

آنالیز برداری شاخه ای از آنالیز ریاضی است که با مقادیری که هم اندازه و هم جهت دارند سروکار دارد. برخی از نمونه های بردار عبارتند از سرعت، نیرو و جابجایی. بردارها معمولاً با اسکالرها همراه هستند، مقادیری که بزرگی را توصیف می کنند.

تحلیل اسکالر

ویرایش

آنالیز اسکالر شاخه‌ای از تحلیل ریاضی است که با مقادیر مربوط به مقیاس بر خلاف جهت سروکار دارد. مقادیری مانند دما اسکالر هستند زیرا بزرگی یک مقدار را بدون توجه به جهت، نیرو یا جابجایی که مقدار ممکن است داشته باشد یا نداشته باشد، توصیف می کنند.

منابع

ویرایش

ویکی پدیای فارسی[۱]

ویکی پدیای انگلیسی[۲]

  1. مقدمه
  2. بخش بدنه صفحه