نگاهی به ریاضیات پیشرفته/مثلثات
مثلثات شاخه ای از ریاضیات است که به بررسی روابط بین طول اضلاع و زوایای مثلث می پردازد. اولین کاربرد مثلثات در مطالعات نجوم بود. اکنون مثلثات در زمینه های ریاضیات محض و کاربردی، فیزیک و ... کاربردهای فراوانی دارد. برخی از روشهای اساسی تحلیل، مانند تبدیل فوریه و معادلات موج، از توابع مثلثاتی برای توصیف رفتار تناوبی موجود در بسیاری از فرآیندهای فیزیکی استفاده میکنند. همچنین، مثلثات اساس علم نقشه برداری است. ساده ترین کاربرد مثلثات در مثلث قائم الزاویه است. هر شکل هندسی دیگری نیز می تواند به مجموعه ای از مثلث های قائم الزاویه تبدیل شود. شکل خاصی از مثلثات مثلثات کروی است که برای مطالعه مثلثات روی سطوح کروی و منحنی استفاده می شود.
تاریخچه
ویرایشمثلثات ار دورانهای دور نیز استفاده میشده است و آن را در معماری، محاسبه مساحت و حجم، نجوم و... استفاده میکردند، مثلثات اولیه به دوران تمدن بابل، سومر، ایران و یونان باز میگردد، در لوح پلیمپتون۳۲۲ در مثلثات اولیه یعنی محاسبه وتر مثلث قائم الزاویه نام برده است
در دوران اسلامی مثلثات گسترش پیدا کرد
خواجه نصیرالدین طوسی اولین کسی بود که مثلثات را بعنوان شاخهای از ریاضیات معرفی کرد.
بتانی منجم مسلمان قرن دهم میلادی اولین کسی بود که فرمولهای مثلثاتی امروزی را ابداع کرد.
واژگان مثلثات در متون فارسی و عربی قدیم با امروزه تفاوت داشت:
نام قدیم در فارسی | معنی نام | نام امروزی |
---|---|---|
جیب | گریبان | سینوس |
جیب تمام | گریبان پُر | کسینوس |
ظل، ظل معکوس | سایه | تانژانت |
ظل تمام، ظل مستوی | سایه پُر | کتانژانت |
قاطع، قطر ظل | بُرنده | سکانت |
قاطع تمام | بُرنده پُر | کسکانت |
امروزه مثلثات کاربردهای زیادی در سری فوریه، تبدیل فوریه،انتگرال، مساحت و حجم، آنالیز، حسابان و... دارد.
کلیات
ویرایشتابعهای اصلی مثلثات
ویرایشمجموع زاویههای داخلی مثلث برابر ۱۸۰ درجه است؛ بنابراین در مثلث قائمالزاویه با داشتن مقدار یک زاویه تند، میتوان مقدار زاویه دیگر را به دست آورد. با مشخص بودن زاویهها میتوان نسبت میان اضلاع را یافت. به این ترتیب، اگر اندازهی یک ضلع معلوم باشد، اندازه دو ضلع دیگر قابل محاسبه است. نسبت میان اضلاع مثلث، با استفاده از توابع مثلثاتی زیر، محاسبه میشود. در شکل روبرو، برای زاویه تند A که مجاور وتر c و ضلع b و روبرو به ضلع a است، داریم:
- تابع سینوس که به صورت نسبت ضلع مقابل به وتر تعریف میشود:
- تابع کسینوس که به صورت نسبت ضلع مجاور به وتر تعریف میشود:
- تابع تانژانت که به صورت نسبت ضلع مقابل به ضلع مجاور تعریف میشود:
توابع مثلثاتی برای زاویه B نیز به همین ترتیب قابل محاسبه هستند. از آنجایی که ضلع مقابل زاویه A مجاور زاویه B است و برعکس، سینوس یک زاویه برابر با کسینوس زاویهی دیگر است. به عبارت دیگر: و .
عکس تابعهای بالا نیز با نامهای سکانت (معکوس کسینوس)، کسکانت (معکوس سینوس) و کتانژانت (معکوس تانژانت) تعریف میشوند.
سکانت: | |
کسکانت: | |
کتانژانت: |
دایره واحد مثلثاتی
ویرایشتابعهای مثلثاتی برای زاویههای تند بر اساس رابطههای بالا محاسبه میشوند. برای زاویههای بزرگتر از ۹۰ درجه (π/۲ رادیان)، میتوان از مفهوم دایره مثلثاتی بهره گرفت. در دایره مثلثاتی، هر زاویهای از صفر تا ۳۶۰ درجه را میتوان رسم کرد و تابعهای مثلثاتی آن را به دست آورد. همان گونه که در شکل روبرو دیده میشود، تابعهای مثلثاتی برای زاویههای بزرگتر از ۹۰ درجه را میتوان به صورت تابعی از زاویههای کوچکتر از ۹۰ درجه، یافت. برای نمونه، تابعهای مثلثاتی برای زاویههای ربع دوم دایره (۹۰ تا ۱۸۰ درجه) با دوران دایره مثلثاتی به میزان ۹۰ درجه، به صورت جدول زیر به دست میآیند:
دوران π/۲ |
---|
تناوب
ویرایشتابعهای مثلثاتی برای زاویههای بزرگتر از ۳۶۰ درجه (۲π) و کوچکتر از صفر درجه نیز تعریف میشوند. برای هر زاویه 'θ مقدار تابع، برابر با مقدار تابع برای زاویه θ درون دایره (۰<θ<۳۶۰) خواهد بود که در رابطه θ'=۳۶۰+۲kθ صدق کند؛ بنابراین تابعهای مثلثاتی با یک تناوب مشخص تکرار میشوند. دوره تناوب تابعهای تانژانت و کتانژانت، ۱۸۰ درجه (π) و دوره تناوب سایر تابعها ۳۶۰ درجه (۲π) است.
تابع وارون
ویرایشبرای تابعهای مثلثاتی، تابع وارون در بازه مشخصی که شرط یک به یک بودن تابع برقرار باشد، تعریف میشود. این تابعها متناظر با تابع اصلی، آرکسینوس، آرککسینوس و آرکتانژانت نامیده میشوند.
زاویههای مرزی
ویرایشربع | زاویه + | زاویه - |
---|---|---|
ربع اول | ||
ربع دوم | ||
ربع سوم | ||
ربع چهارم |
جدول مثلثات در دایره به صورت زاویه
ویرایشنسبتهای مثلثاتی | ربع اول | ربع دوم | ربع سوم | ربع چهارم |
---|---|---|---|---|
مثلثات در مساحت و حجم
ویرایشکاربرد مثلثات در مساحت و حجم منشور های چندپهلو،چندوجهی منتظم یکنواخت،چندضلعی ها استفاده می گردد.
اشکال هندسی | مساحت | حجم |
---|---|---|
منشور چندپهلو | ||
چندوجهی منتظم یکنواخت | نامعلوم | |
چندضلعی منتظم | سه بعدی نیست |
حجم چندوجهی بر اساس ترکیب حجم کره،شعاع چندوجهی و مساحت چندضلعی منتظم بدست می آید.
چندضلعی منتظم یک جسم دوبعدی است و حجمی ندارد.
منابع
ویرایشچندضلعی منتظم
ویکی پدیای فارسی
مساحت و حجم
منشور