نگاهی به ریاضیات پیشرفته/انتگرال

در ریاضیات، انتگرال ، روشی برای اختصاص اعداد به توابع است؛ به گونه‌ای که جابجایی، مساحت، حجم و دیگر مفاهیم برآمده از ترکیب داده‌های بی‌نهایت کوچک را به وسیله آن بتوان توصیف کرد. انتگرال‌گیری یکی از دو عمل مهم در حساب دیفرانسیل و انتگرال است، که عمل دیگر آن(عمل معکوس) دیفرانسیل‌گیری یا همان مشتق‌گیری است. برای تابع داده شده‌ای چون f از متغیر حقیقی x و بازه از خط حقیقی،به صورت ساده و انتگرال معین نوشته می گردد:

به‌طور صوری به عنوان مساحت علامت‌دار ناحیه‌ای از صفحه xy که به نمودار f، محور x و خطوط عمودی x=a و x=b محدود شده‌است. نواحی بالای محور x به مساحت کل افزوده و نواحی پایین محور x از آن می‌کاهند.

عملیات انتگرال‌گیری، در حد یک مقدار ثابت (یعنی بدون در نظر گرفتن یک مقدار ثابت)، معکوس عملیات دیفرانسیل‌گیری است. بدین منظور، اصطلاح انتگرال را می‌توان به معنای پاد-مشتق نیز به کار برد، یعنی تابعی چون F که مشتقش تابع داده شده‌ی f باشد. در این حالت به انتگرال f، انتگرال نامعین گفته شده و به صورت زیر نوشته می‌شود:

انتگرال‌هایی که در این مقاله مورد بحث قرار می‌گیرند از نوع انتگرال معین اند. قضیه اساسی حساب، دیفرانسیل‌گیری را به انتگرال معین ارتباط می‌دهد: اگر f یک تابع پیوسته حقیقی مقدار روی بازهٔ باشد، آنگاه زمانی که پاد مشتق f یعنی F، معلوم باشد، انتگرال f روی آن بازه مساوی است با:

اصول انتگرال‌گیری به‌طور مستقل توسط اسحاق نیوتون و گوتفرید ویلهلم لایبنیز در اواخر قرن هفدهم میلادی قاعده‌بندی شد، آن‌ها انتگرال را به صورت جمع مستطیل‌هایی با عرض‌های بی‌نهایت کوچک می‌دیدند. برنارد ریمان تعریف دقیقی از انتگرال ارائه نمود. این تعریف بر اساس فرایند حد گیری است که مساحت زیر نمودار یک خم را با شکستن آن ناحیه به قطعات نازک عمودی تخمین می‌زند. با شروع قرن نوزدهم میلادی، مفاهیم پیچیده‌تری از انتگرال ظهور پیدا کرد که در آن نوع تابع به علاوه دامنه انتگرال‌گیری تعمیم یافت. انتگرال خطی برای توابع دو یا چند متغیره تعریف شده‌است و بازه انتگرال‌گیری در آن با خمی که دو نقطه ابتدا و انتهای انتگرال‌گیری را به هم متصل می‌کند جایگزین شده‌است. در انتگرال سطح (یا انتگرال رویه ای)، خم با یک رویه در فضای سه بعدی جایگزین می‌شود.

تفاسیر

ویرایش

انتگرال ها در بسیاری از موقعیت های عملی ظاهر می شوند. به عنوان مثال، از طول، عرض و عمق یک استخر شنا که مستطیل شکل با کف صاف است، می توان حجم آبی که می تواند داشته باشد، مساحت سطح و طول لبه آن را تعیین کرد. اما اگر بیضی شکل با پایین گرد باشد، برای یافتن مقادیر دقیق و دقیق برای این کمیت ها، انتگرال ها مورد نیاز است. در هر مورد، می‌توان مقدار مورد نظر را به بی‌نهایت قطعات بی‌نهایت کوچک تقسیم کرد، سپس قطعات را جمع کرد تا به یک تقریب دقیق دست یافت.

به عنوان مثال، برای یافتن مساحت ناحیه محدود شده توسط نمودار تابع f ( x ) = √ x بین x = 0 و x = 1 ، می توان از فاصله در پنج مرحله عبور کرد ( 0، 1/5، 2/ 5، ...، 1 )، سپس با استفاده از ارتفاع سمت راست انتهای هر قطعه یک مستطیل را پر کنید (بنابراین √ 0 ، √ 1/5 ، √ 2/5 ، ...، √ 1 ) و مساحت آنها را جمع کنید تاتقریب از یک عدد به دست آید. که از مقدار دقیق آن بزرگتر است. از طرف دیگر، هنگام جایگزینی این زیر بازه‌ها با یکی با ارتفاع انتهای سمت چپ هر قطعه، تقریبی که بدست می‌آید بسیار کم است: با دوازده زیر بازه، مساحت تقریبی فقط 0.6203 است. با این حال، زمانی که تعداد قطعات تا بی نهایت افزایش یابد، به حدی می رسد که مقدار دقیق مساحت مورد نظر است (در این مورد، 2/3یکی می نویسد)

 

تعاریف رسمی

ویرایش

راه های زیادی برای تعریف رسمی یک انتگرال وجود دارد که همه آنها معادل نیستند. تفاوت ها عمدتاً برای رسیدگی به موارد خاص متفاوت وجود دارد که ممکن است تحت تعاریف دیگر قابل ادغام نباشند، اما گاهی اوقات به دلایل آموزشی نیز وجود دارد. متداول ترین تعاریف انتگرال ریمان و انتگرال لبگ هستند.

انتگرال ریمان

ویرایش

انتگرال ریمان بر اساس مجموع توابع ریمان با توجه به پارتیشن های برچسب گذاری شده یک بازه تعریف می شود.  یک پارتیشن برچسب گذاری شده از یک بازه بسته [ a , b ] روی خط واقعی یک دنباله محدود است.

 

این بازه [ a , b ] را به n بازه فرعی [ xi −1 ، xi ] که با i نمایه شده است تقسیم می‌کند، که هر کدام با یک نقطه متمایز t i ∈ [xi -1 ، x i ] « برچسب » شده‌اند . . مجموع ریمان تابع f با توجه به چنین پارتیشن برچسب‌گذاری شده به صورت تعریف می‌شود

 

بنابراین هر جمله از مجموع مساحت یک مستطیل با ارتفاع برابر با مقدار تابع در نقطه متمایز از بازه فرعی داده شده، و عرض برابر با عرض فاصله فرعی، Δ i = x i - x i است. -1 . مش چنین پارتیشن برچسب گذاری شده ای عرض بزرگترین بازه فرعی است که توسط پارتیشن تشکیل شده است، max i = 1... n Δ i . انتگرال ریمان تابع f در بازه [ a , b ] برابر با S است اگر:

برای همه وجود دارد باشد به طوری که  برای هر[a,b] برچسب گذاری شده باشد کمتر از هنگامی که تگ‌های انتخابی حداکثر (به ترتیب، حداقل) مقدار هر بازه را می‌دهند، مجموع ریمان به جمع داربوکس بالایی (به ترتیب، پایین‌تر) تبدیل می‌شود که ارتباط نزدیک بین انتگرال ریمان و انتگرال داربو را نشان می‌دهد .

 

انتگرال لبگ

ویرایش

غالباً چه در تئوری و چه در کاربردها، قابل توجه است که بتوان از حد انتگرال عبور کرد. برای مثال، اغلب می‌توان دنباله‌ای از توابع را ساخت که به معنایی مناسب، راه‌حل یک مسئله را تقریب می‌کنند. سپس انتگرال تابع حل باید حد انتگرال تقریب ها باشد. با این حال، بسیاری از توابعی که می توان به عنوان حد به دست آورد، قابل انتگرال پذیری ریمان نیستند، و بنابراین چنین قضایای حدی با انتگرال ریمان سازگار نیستند. بنابراین، داشتن تعریفی از انتگرال که امکان ادغام کلاس وسیع تری از توابع را فراهم می کند، اهمیت زیادی دارد.

چنین انتگرالی انتگرال لبگ است که از واقعیت زیر برای بزرگ‌تر کردن کلاس توابع انتگرال‌پذیر استفاده می‌کند: اگر مقادیر یک تابع در دامنه مرتب شوند، انتگرال یک تابع باید ثابت بماند. همانطور که فولاند می‌گوید، «برای محاسبه انتگرال ریمان f ، دامنه [ a , b ] را به زیر بازه‌ها تقسیم می‌کنیم، در حالی که در انتگرال لبگ، «در واقع محدوده f را تقسیم می‌کنیم.  بنابراین تعریف انتگرال لبگ با یک اندازه آغاز می شود ، μ. در ساده ترین حالت، اندازه گیری لبگ (μ ( A یک بازه [A = [ a , b عرض آن است، ba، به طوری که انتگرال لبگ با انتگرال (مناسب) ریمان در زمانی که هر دو وجود دارند موافق است.  در موارد پیچیده‌تر، مجموعه‌هایی که اندازه‌گیری می‌شوند می‌توانند بسیار پراکنده باشند، بدون پیوستگی و هیچ شباهتی به فواصل.

با استفاده از فلسفه "تقسیم بندی محدوده f "، انتگرال یک تابع غیرمنفی f  : RR باید مجموع بیش از t مناطق بین یک نوار افقی نازک بین y = t و y = t + dt باشد. این ناحیه فقط μ { x  : f ( x ) > t }  dt است . فرض کنید f ( t ) = μ { x  : f ( x) > t } . سپسfتوسط انتگرال لبگ تعریف می شود

 

جایی که انتگرال سمت راست یک انتگرال ریمان نامناسب معمولی است ( f یک تابع مثبت کاملاً کاهشی است و بنابراین دارای یک انتگرال ریمان نامناسب کاملاً تعریف شده است ).  برای یک کلاس مناسب از توابع (توابع قابل اندازه گیری ) این انتگرال لبگ را تعریف می کند.

اگر مجموع مقادیر مطلق نواحی بین نمودار f و محور x محدود باشد، یک تابع قابل اندازه‌گیری کلی f ، قابل انتگرال‌پذیری لبگ است:

 

در آن صورت، انتگرال، مانند حالت ریمانی، تفاوت بین ناحیه بالای محور x و ناحیه زیر محور x است:

 

جایی که 

خطی بودن

ویرایش

مجموعه توابع قابل ادغام ریمان در یک بازه بسته [ a , b ] یک فضای برداری را تحت عملیات جمع نقطه ای و ضرب توسط یک اسکالر و عملیات یکپارچه سازی تشکیل می دهد.

 

یک تابع خطی در این فضای برداری است. بنابراین، مجموعه توابع انتگرال پذیر با گرفتن ترکیبات خطی بسته می شود ، و انتگرال یک ترکیب خطی، ترکیب خطی انتگرال ها است:

 

به طور مشابه، مجموعه توابع انتگرال پذیر Lebesgue با ارزش واقعی در فضای اندازه گیری داده شده E با اندازه گیری μ تحت ترکیب های خطی بسته می شود و بنابراین یک فضای برداری و انتگرال لبگ را تشکیل می دهد.

 

یک تابع خطی در این فضای برداری است، به طوری که:

 

به طور کلی، فضای برداری همه توابع قابل اندازه گیری را در یک فضای اندازه گیری در نظر بگیرید ( E , μ ) و مقادیر را در یک فضای برداری توپولوژیکی کامل فشرده محلی V روی یک میدان توپولوژیکی فشرده محلی K ، f  : EV در نظر بگیرید. سپس می توان یک نقشه انتزاعی انتزاعی تعریف کرد که به هر تابع یک عنصر از V یا نماد اختصاص می دهد ،

 

که با ترکیبات خطی سازگار است.  در این وضعیت، خطی بودن برای زیرفضای توابعی که انتگرال آنها عنصری از V است (یعنی "محدود") برقرار است. مهم‌ترین موارد خاص زمانی به وجود می‌آیند که K R ، C یا یک گسترش متناهی از میدان Q p از اعداد پی آدیک باشد ، و V یک فضای برداری با بعد محدود روی K باشد، و زمانی که K = C و V یک مختلط است. فضای هیلبرت

خطی بودن، همراه با برخی ویژگی‌های پیوستگی طبیعی و نرمال‌سازی برای کلاس خاصی از توابع «ساده»، ممکن است برای ارائه یک تعریف جایگزین از انتگرال استفاده شود. این رویکرد دانیل برای مورد توابع با ارزش واقعی در مجموعه X است که توسط نیکلاس بورباکی به توابع با مقادیر در یک فضای برداری توپولوژیکی فشرده محلی تعمیم داده شده است. برای توصیف بدیهی انتگرال به هیلدبراند 1953 مراجعه کنید .

نابرابری ها

ویرایش

تعدادی از نابرابری‌های کلی برای توابع قابل انتگرال‌پذیری ریمان که در بازه‌های بسته و محدود [ a , b ] تعریف شده‌اند وجود دارند و می‌توان آن‌ها را به مفاهیم دیگر انتگرال تعمیم داد (لبگ و دانیل).

  • مرزهای بالا و پایین. یک تابع انتگرال پذیر f در [ a , b ] ، لزوماً در آن بازه محدود است. بنابراین اعداد حقیقی m و M وجود دارند به طوری که mf  ( x ) ≤ M برای همه x در [ a , b ] . از آنجایی که مجموع پایین و بالایی f بیش از [ a , b ] به ترتیب با m محدود می شوند ( b-a ) و M ( ba ) ، نتیجه می شود که

 

  • نابرابری بین توابع  اگر f ( x ) ≤ g ( x ) برای هر x در [ a , b ] ، هر یک از مجموع بالا و پایین f در بالا به ترتیب با مجموع بالا و پایین g محدود می شود. بدین ترتیب

  این تعمیم نابرابری های فوق است، زیرا M ( b - a ) انتگرال تابع ثابت با مقدار M بیش از [ a , b ] است. علاوه بر این، اگر نابرابری بین توابع دقیق باشد، نابرابری بین انتگرال ها نیز شدید است. یعنی اگر f ( x ) < g ( x ) برای هر x در [ a , b ]

 

  • زیر بازه ها اگر [ c , d ] زیر بازه ای از [ a , b ] باشد و f  ( x ) برای همه x غیر منفی باشد ، آنگاه

 

  • محصولات و مقادیر مطلق توابع. اگر f و g دو تابع باشند، ممکن است حاصل ضربات نقطه‌ای و توان و مقادیر مطلق آنها را در نظر بگیریم :

  اگر f روی [ a , b ] قابل ادغام ریمان باشد ، در مورد نیز همینطور است| f | ، و

  علاوه بر این، اگر f و g هر دو انتگرال پذیر ریمان باشند، fg نیز قابل انتگرال پذیری ریمان است، و

  این نابرابری که به نام نابرابری کوشی-شوارتز شناخته می‌شود ، نقش برجسته‌ای در نظریه فضای هیلبرت بازی می‌کند، جایی که سمت چپ به عنوان حاصلضرب درونی دو تابع مربع‌پذیر f و g در بازه [ a ، b ] تفسیر می‌شود .

  • نابرابری هلدر  فرض کنید که p و q دو عدد واقعی هستند، 1 ≤ p , q ≤ ∞ با1/پ+1/q= 1 و f و g دو تابع قابل ادغام ریمان هستند. سپس توابع | f | p و | g | q نیز انتگرال پذیر هستند و نابرابری هلدر زیر صادق است: برای p = q = 2 ، نابرابری هولدر به نابرابری کوشی-شوارتز تبدیل می شود.
  • نابرابری مینکوفسکی  فرض کنید که p ≥ 1 یک عدد واقعی است و f و g توابع قابل انتگرال گیری ریمان هستند. سپس | f | p , | g | p و | f + g | p همچنین قابل ادغام ریمان هستند و نابرابری مینکوفسکی زیر صادق است:

  یک آنالوگ این نابرابری برای انتگرال لبگ در ساخت فضاهای L p استفاده می شود.

کنوانسیون ها

ویرایش

در این بخش، f یک تابع قابل ادغام ریمان با ارزش واقعی است . انتگرال

 

در یک بازه [ a , b ] تعریف می شود اگر a < b . این بدان معنی است که مجموع بالا و پایین تابع f در یک پارتیشن a = x 0x 1 ≤ ارزیابی می شود. . . ≤ x n = b که مقادیر x i در حال افزایش است. از نظر هندسی، این نشان می‌دهد که ادغام از چپ به راست انجام می‌شود و f را در فواصل زمانی [ xi  ، x i  +1 ] ارزیابی می‌کند .  جایی که یک بازه با شاخص بالاتر در سمت راست یک با شاخص کمتر قرار دارد. مقادیر a و b ، نقاط انتهایی بازه ، حدود یکپارچه سازی f نامیده می شوند . انتگرال ها همچنین می توانند تعریف شوند اگر a > b :

 

با a = b ، این نشان می دهد:

 

اولین قرارداد با توجه به در نظر گرفتن انتگرال ها بر فرعی بازه های [ a , b ] ضروری است . دومی می گوید که انتگرال گرفته شده در یک بازه منحط، یا یک نقطه ، باید صفر باشد . یکی از دلایل قرارداد اول این است که انتگرال پذیری f در بازه [ a , b ] دلالت بر این دارد که f در هر زیر بازه [ c , d ] قابل انتگرال است، اما به طور خاص انتگرال ها این ویژگی را دارند که اگر c هر عنصری از [ a باشد. ،b ] ، سپس:

 

با اولین قرارداد، رابطه حاصل

 

سپس برای هر جایگشت چرخه ای a ، b و c به خوبی تعریف می شود .

منابع

ویرایش

ویکی پدیای فارسی

ویکی پدیای انگلیسی

محتوای این صفحه در حال تحقیق است.